Crystal frameworks, matrix-valued functions and rigidity operators
نویسنده
چکیده
An introduction and survey is given of some recent work on the infinitesimal dynamics of crystal frameworks, that is, of translationally periodic discrete bond-node structures in R, for d = 2, 3, . . . . We discuss the rigidity matrix, a fundamental object from finite bar-joint framework theory, rigidity operators, matrix-function representations and low energy phonons. These phonons in material crystals, such as quartz and zeolites, are known as rigid unit modes, or RUMs, and are associated with the relative motions of rigid units, such as SiO4 tetrahedra in the tetrahedral polyhedral bondnode model for quartz. We also introduce semi-infinite crystal frameworks, bi-crystal frameworks and associated multi-variable Toeplitz operators. Mathematics Subject Classification (2000). Primary 52C75; Secondary 46T20.
منابع مشابه
Infinite bar-joint frameworks, crystals and operator theory
A theory of flexibility and rigidity is developed for general infinite bar-joint frameworks (G, p). Determinations of nondeformability through vanishing flexibility are obtained as well as sufficient conditions for deformability. Forms of infinitesimal flexibility are defined in terms of the operator theory of the associated infinite rigidity matrix R(G, p). The matricial symbol function of an ...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملPolynomials for crystal frameworks and the rigid unit mode spectrum.
To each discrete translationally periodic bar-joint framework C in Rd, we associate a matrix-valued function ΦC(Z) defined on the d-torus. The rigid unit mode (RUM) spectrum Ω(C) of C is defined in terms of the multi-phases of phase-periodic infinitesimal flexes and is shown to correspond to the singular points of the function Z → rankΦC(Z) and also to the set of wavevectors of harmonic excitat...
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کامل